1. [15 pts] Let $G = (V, \Sigma, P, S)$ be a regular grammar. Construct a representation for the grammar G over \{0, 1\} (Problem 11.7, Page 359).

2. [15 pts] Let $G = (V, \Sigma, P, S)$ be a regular grammar. Design a 2-tape (nondeterministic) TM M that decides whether a string w is in $L(G)$ (Problem 11.7, Page 359).

3. [20 pts] Show that the language L_λ is recursively enumerable based on the Universal Turning machine as presented in Section 11.5.