Chapters 11 and 12

Decision Problems and Undecidability
11.1 Decision Problems

- A decision problem
 - consists of a set of questions whose answers are either yes or no
 - is undecidable if no algorithm that can solve the problem; otherwise, it is decidable

- The Church-Turing thesis asserts that
 - a decision problem P has a solution if, and only if, there exists a TM that determines the answer for every $p \in P$
 - if no such TM exists, the problem is said to be undecidable

- An unsolvable problem
 - is a problem such that there does not exist any TM that can solve the problem
Decision Problems

- Algorithm \(L \) that solves a decision problem should be **effective**, i.e.,
 - **Complete**: \(L \) produces the correct **answer** (yes/or) to each question (of the problem)
 - **Mechanistic**: \(L \) consists of a **finite** sequence of instructions
 - **Deterministic**: \(L \) produces the same **result** for the same input

- **The Church-Turing Thesis for Computable Functions:**
 - A function \(f \) is effective, i.e., effectively computable, if and only if there is a TM that computes \(f \).
11.2 Recursive Languages

- **Defn.** A recursive language L is a formal language for which there exists a TM that will *halt* and *accept* an input string in L, and *halt* and *reject*, otherwise.

- **Example 11.2.1** The decision problem of determining whether a natural number is a *perfect square* (represented by using the string a^n) is decidable.

- **Example 11.2.2** The decision problem of determining whether there is a *path* P from node v_i to a node v_j in a directed graph G (with nodes v_1, \ldots, v_n) using a NTM M with 2-tape is decidable. G is represented over $\{0, 1\}$ as:
 - Encode $v_k (1 \leq k \leq n)$ as 1^{k+1}, and arc (v_s, v_t) as $1^{s+1} 0 1^{t+1}$
 - Separate each arc by 00; three 0’s separate G and v_i and v_j
 - Write v_i (as v_s) on tape 2 and consider each arc (v_s, v_t) in G
 - M *accepts*, if $v_t = v_j$, or *rejects* if v_t has been visited/no edge
12.1 The Halting Problem for TMs

- The halting problem
 Given an arbitrary TM M with input alphabet Σ and a string $w \in \Sigma^*$, will the computation of M with w halt?

- There is no algorithm that solves the halting problem, i.e., the halting problem is undecidable.

- A solution to the halting problem requires a general algorithm that answers the halting question for each combination of TM and input string.

 - Proposed solution: encode the TM M and the string w as an input over the alphabet $\{0, 1\}$ and tape alphabet $\{0,1,B\}$ with $\{q_0, q_1, \ldots, q_n\}$ being the states of M and q_0 is the start state.
Consider the following encoding scheme (as shown in Section 11.5):

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>111</td>
</tr>
<tr>
<td>q_0</td>
<td>1</td>
</tr>
<tr>
<td>q_1</td>
<td>11</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>q_n</td>
<td>1^{n+1}</td>
</tr>
<tr>
<td>L</td>
<td>1</td>
</tr>
<tr>
<td>R</td>
<td>11</td>
</tr>
</tbody>
</table>

Let $en(Z)$ denotes the encoding of a symbol Z. A transition $\delta(q_i, X) = [q_j, Y, d]$ is encoded by the string

$$en(q_i) \ 0 \ en(X) \ 0 \ en(q_j) \ 0 \ en(Y) \ 0 \ en(d)$$

where 0’s separate the components of the transition, 2 0s separate transitions, and 3 0s designate the beginning & end of the encoding.
12.1 The Halting Problem for TMs

- We can construct a TM to determine whether an arbitrary string \(u \in \{0, 1\}^* \) is the encoding of a DTM \(M \).

- **Theorem 12.1.1.** The halting problem of TMs is *undecidable*.

 Proof. The proof is by *contradiction*. Assume that there is a TM \(H \) that solves the *halting* problem. A string \(z \) is accepted by \(H \) if

 (i) \(z \) consists of the representation of a TM \(M \) following by a string \(W \), and

 (ii) the computation of \(M \) with input \(W \) halts.

 If either of these conditions is not satisfied, then \(H \) rejects the input. …
11.2 Recursive vs. Recursively Enumerable Languages

- **Defn.** A recursively enumerable language L is a formal language for which there exists a TM that will *halt* and *accept* an input string in L, and may either (i) *halt* and *reject*, or (ii) *loop forever*, otherwise.

- **Defn.** A recursive language L is a formal language for which there exists a TM that will *halt* and *accept* an input string in L, and *halt* and *reject*, otherwise.

- **Corollary 12.1.3** The recursive languages are a *proper subset* of recursively enumerable languages.

Proof. Let a language L be $L_H = \{ R(M)w \mid R(M) \text{ is the representation of a TM } M \text{ and } M \text{ halts with input } w \}$ over $\{0, 1\}^*$ is recursively enumerable according to Theorem 11.5.1 (i.e., L_H is recursively enumerable). L_H is not recursive according to Corollary 12.1.2, which states that the language L_H is *not* recursive.
11.2 Recursive vs. Recursively Enumerable Languages

Given that L and P are two recursively enumerable languages, then the following languages are recursively enumerable:

- The union, $L \cup P$
- The intersection, $L \cap P$
- The concatenation LP of L and P
- The Kleene star L^* of L

Recursively enumerable languages are not closed under set difference or complementation, i.e., given two recursively enumerable languages L and P

- If \bar{L} is also recursively enumerable, then L is recursive
- $L – P$ may or may not be recursively enumerable, since

$$L – P = L \cap \overline{L} \cap P$$
11.2 Recursive vs. Recursively Enumerable Languages

- The union of two recursively enumerable languages is recursively enumerable

Proof. Let L_1 and L_2 be two recursively enumerable languages accepted by TMs M_1 and M_2, respectively. We show that $L_1 \cup L_2$ is accepted by a 2-tape TM M.

Let $x = w_1 \lor w_2$. To determine if M_1 or M_2 accepts x, i.e., $w_1 \in L_1$ or $w_2 \in L_2$, run both M_1 & M_2 on x simultaneously using the 2-tape TM M.

M simulates M_1 on the first tape & M_2 on the second tape. If either one of the TM enters the final state and halts, then the input x is accepted by M, i.e.,
11.2 Recursive vs. Recursively Enumerable Languages

- If the languages \(L \) and \(\overline{L} \) are recursively enumerable, then \(L \) is recursive.

Proof. Let \(M_1 \) & \(M_2 \) be two TMs, such that \(L = L(M_1) \) and \(\overline{L} = L(M_2) \). Construct a 2-tape TM that simulates \(M_1 \) & \(M_2 \) in parallel, with \(M_1 \) on tape 1 & \(M_2 \) on tape 2.

If an input \(x \) to \(M \) is in \(L \), then \(M_1 \) halts & accepts \(x \), and hence \(M \) accepts \(x \) and halts.

If input \(x \) to \(M \) is not in \(L \), hence it is in \(\overline{L} \), then \(M_2 \) accepts and halts for \(x \) and \(M \) halts w/o accepting. Hence, \(M \) halts with every input and \(L = L(M) \), and \(L \) is recursive.

![Diagram](image.png)
11.2 Recursive vs. Recursively Enumerable Languages

- Given that L and P are two recursive languages, then the following languages are recursive as well:
 - The union, $L \cup P$
 - The intersection, $L \cap P$
 - The difference, $L - P$
 - The complement of L, \overline{L}
 - The concatenation LP of L and P
 - The Kleene star L^* of L

- Recursively languages L and P are closed under set difference, since

$$L - P = L \cap \overline{L} \cap P$$
11.2 Recursive vs. Recursively Enumerable Languages

- Given that \(L \) is a recursive language and \(P \) is a recursively enumerable language, then the following languages are recursively enumerable as well:
 - The union, \(L \cup P \)
 - The intersection, \(L \cap P \)
 - The concatenation \(LP \) of \(L \) and \(P \)
 - The difference, \(P - L \) (but not \(L - P \))
11.2 Recursive vs. Recursively Enumerable Languages

- The **intersection** of a recursive language \(L_1\) & a recursively enumerable language \(L_2\) is recursively enumerable.

Proof. Let \(L_1\) and \(L_2\) be the languages accepted by TMs \(M_1\) and \(M_2\), respectively. We show that \(L_1 \cap L_2\) is accepted by a TM \(M\) which halts and accepts an input string \(x\) if \(x \in L_1 \cap L_2\).

\(M\) simply simulates \(M_1\) & \(M_2\) one after the other on the same input \(x\). If \(M_1\) halts and accepts \(x\), \(M\) clears the tape, copies \(x\) on the tape & starts simulating \(M_2\). If \(M_2\) also halts & accepts \(x\), then \(M\) accepts \(x\).

Clearly, \(M\) accepts \(L_1 \cap L_2\), and if \(M_1\) & \(M_2\) halts on all inputs, then \(M\) also halts on all inputs.
11.4 The Church-Turing Thesis

- The **Church-Turing thesis** asserts that every solvable decision problem can be transformed into an equivalent Turing machine problem.

- The **Church-Turing thesis for decision problems:**

 There is an *effective* procedure to solve a decision problem if, and only if, there is a TM that *halts* for all input strings and solves the problem.

 - A solution to a decision problem is equivalent to the question of membership in a *recursive language*.

- The **Church-Turing thesis for Recognition Problems:**

 A decision problem P is *partially* solvable if, and only if, there is a TM that *accepts* precisely the instances of P whose answer is “yes”.

 - A partial solution to a decision problem is equivalent to the question of membership in a *recursively enumerable language*.
11.5 A Universal Machine

- Universal Turning machine (U)
 - designed to simulate the computations of any TM M
 - Accepts the input $R(M)w$, whenever M (accepts by halting) halts with w
 - Loop whenever M does not halt with w
 - U accepts the set of strings in $L(U)$, which consists of all strings $R(M)w$ for which M halts with input w
 - U represents the entire family of TMs, since the outcome of the computation of any TM M with input w can be obtained by the computation of U with input $R(M)w$
11.5 A Universal Machine

Theorem 11.5.1 The language $L_H = \{ R(M)w \mid M \text{ halts with input } w \}$ is recursively enumerable.

Proof. Use a deterministic 3-tape TM U to accept L_H by halting, where

1) an input string S is placed on tape 1 and U moves indefinitely to the right if S does not have the form $R(M)w$

2) the computation of M with w, which is copied to tape 3, is simulated on tape 3

3) the current state, i.e., start state q_0, is encoded as ‘1’ on tape 2

4) let x be the symbol on tape 3 and q_i the state encoded on tape 2:
 a) Scan tape 1 for $en(q_i)$ and $en(x)$. If such transition does not exist, U halts and accepts S. (* Recall that U accepts by halting *)
 b) Otherwise, $en(q_i) \ 0 \ en(x) \ 0 \ en(q_j) \ 0 \ en(y) \ 0 \ en(d)$ exists. Then
 i. Replace $en(q_i)$ by $en(q_j)$ on tape 2.
 ii. Write y to tape 3.
 iii. Move the tape head of tape 3 in the direction of d.

5) Repeat Step 4 to simulate the next transition of M.