1. (Problem 15.1 on Page 493) Let M be the Turing machine

(b) [10 pts] Describe the computation of M with input a^n that requires the maximum number of transitions.

(c) [3 pts] Give the function t_{CM}.

2. The (following) machine R computes a function from $\{a, b\}^* \rightarrow \{c, d\}^*$ (Problem 15.12 on Page 495):

(b) [10 pts] What string of length n will cause R to use the greatest number of transitions? Explain Why.

(c) [3 pts] Give the function t_{CR}.

(d) [8 pts] Does the machine R reduce the language $L = abb(a \cup b)^*$ to the language $Q = (c \cup d)^*cdd^*$? If yes, prove that the function computed by R is a reduction. If no, give a string that demonstrates that the mapping is not a reduction.

3. [16 pts] Assume that $P = NP$. Let L be the language in NP with $L \neq \emptyset$ and $\overline{L} \neq \emptyset$. Prove that L is NP-complete (Problem 15.17(a) on Page 495).