1. [10 pts] Let \(L \) be the language over the alphabet \(\{a, b\} \) defined by

 (i) Basis: \(\lambda \in L \).

 (ii) Recursion: If \(u \in L \) and \(u = xyz \), then \(xaybz \in L \) and \(xbyaz \in L \).

 (iii) Closure: A string \(u \in L \) only if \(u \) can be obtained by a finite number of applications of the recursive step.

 Describe \(L \) (Example 2.2.3 on page 46), i.e., what are the strings in \(L \)?

2. [16 pts] Give a recursive definition of the set of strings over \(\{a, b\} \) that contains twice as many \(a \)'s as \(b \)'s. (Problem 8 on page 59).

3. [2 pts] True or False. \(\{ \lambda \} \), the language consisting of only the null string, is a language over any alphabet.

4. [2 pts] True or False. \(\emptyset \), the empty language, is a language over any alphabet.

5. Give a regular expression that represents each of the following described sets:

 (a) [10 pts] The set of strings over \(\{a, b\} \) in which every \(a \) is either immediately preceded or immediately followed by \(b \), e.g., \(baab, aba \), and \(b \). (Problem 28 on page 60)

 (b) [10 pts] The set of strings over \(\{a, b\} \) that do not contain the substring \(\text{aaa} \). (Problem 31 on page 60)