Chapter 5

Finite Automata
5.1 Finite State Automata

- Capable of recognizing numerous symbol patterns, the class of regular languages

- Suitable for pattern-recognition type applications, such as the lexical analyzer of a compiler

- An abstract (computing) machine M, which is implementation independent, can be used to determine the acceptability (the outputs) of input strings (which make up the language of M)
Lexical Analyzer

- Recognizes occurrences of (valid/acceptable) strings concisely

- Use a (state) transition diagram for producing lexical analysis routines, e.g., Figure 1 (next page)

- Use a transition table whose entries provide a summary of a corresponding transition diagram, which consists of rows (representing states), columns (representing symbols) and EOS (End_of_string)
 - Entries of a transition table contain the values “accept”, “error”, next states. e.g., Figure 3

- Can be encoded in a program segment, e.g., Figure 2
Transition Diagram and Table

Figure 1. A transition diagram representing the syntax of a variable name

Figure 2. A transition table constructed from the transition diagram of Figure 1

<table>
<thead>
<tr>
<th>letter</th>
<th>digit</th>
<th>EOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>error</td>
<td>error</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Instruction Sequence

State := 1;
Read the next symbol from input;
While not end-of-string do
 Case State of
 1: If the current symbol is a letter then State := 3,
 else if the current symbol is a digit then State := 2,
 else exit to error routine;
 2: Exit to error routine;
 3: If the current symbol is a letter then State := 3,
 else if the current symbol is a digit then State := 3,
 else exit to error routine;
 Read the next symbol from the input;
End while;
If State not 3 then exit to error routine;

Figure 3. An instruction sequence suggested by the transition diagram of Figure 1
5.2 Deterministic Finite Automaton

DFA (Deterministic Finite Automaton) is a quintuple $M = (Q, \Sigma, \delta, q_0, F)$, where

1) Q is a finite set of states
2) Σ is a finite set of (machine) alphabet
3) δ is a transitive function from $Q \times \Sigma$ to Q, i.e., $\delta: Q \times \Sigma \rightarrow Q$
4) $q_0 \in Q$, is the start state
5) $F \subseteq Q$, is the set of final (accepting) states

![Diagram of a DFA](image)
Figure 5. A transition diagram representing the syntax of a real number.
Transition Table

Table 1. A transition table constructed from the transition diagram of the previous figure

<table>
<thead>
<tr>
<th>digit</th>
<th></th>
<th>E</th>
<th>+</th>
<th>-</th>
<th>EOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>error</td>
<td>error</td>
<td>error</td>
<td>error</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>error</td>
<td>error</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>error</td>
<td>error</td>
<td>error</td>
<td>error</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>error</td>
<td>5</td>
<td>error</td>
<td>error</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>error</td>
<td>error</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>error</td>
<td>error</td>
<td>error</td>
<td>error</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>error</td>
<td>error</td>
<td>error</td>
<td>error</td>
</tr>
</tbody>
</table>
Deterministic Finite Automaton

Input tape

...

tape head

head moves in this direction

state indicator

1 2
3 4
5 6

control mechanism

Figure 6. A representation of a deterministic finite automaton
Computation in DFA

\[M: Q = \{ q_0, q_1 \} \]
\[\Sigma = \{ a, b \} \]
\[F = \{ q_1 \} \]
\[\delta(q_0, a) = q_1 \]
\[\delta(q_0, b) = q_0 \]
\[\delta(q_1, a) = q_1 \]
\[\delta(q_1, b) = q_0 \]

Figure 5.2 Computation in a DFA
Defn 5.3.1. The state diagram of a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) is a labeled graph \(G \) defined by the following:

i. For each node \(N \in G, N \in Q \)

ii. For each arc \(E \in G, \text{label}(E) \in \Sigma \)

iii. \(q_0 \) is depicted

iv. For each \(f \in F, f \) is depicted

v. For each \(\delta(q_i, a) = q_j, \exists E(q_i, q_j) \) and \(\text{label}(E) = a \)
 - a transition is represented by an *arc*

vi. For each \(q_i \in Q \& a \in \Sigma, \exists! E(q_i, q_j) \& \text{label}(E) = a, \text{where } q_j \in Q \)

Example: Construct the state diagram of \(L(M) \) for DFA \(M \):

\[L(M) = \{ \text{w} \mid \text{w contains at least one 1 and an even number of 0 follow the first 1} \} \]
Definitions

- **Defn 5.2.2.** Let $m = (Q, \Sigma, \delta, q_0, F)$ be a DFA. The language of m, denoted $L(m)$, is the set of strings in Σ^* accepted by m.

- **Defn 5.2.3 (Machine configuration).** The function $\underbrace{\delta}_{M}$ ("yields") on $Q \times \Sigma^+$ is defined by
 $$[q_i, aw] \underbrace{\delta}_{M} [\delta(q_i, a), w]$$
 where $a \in \Sigma$, $w \in \Sigma^*$, and $\delta \in M$. Also,
 $$[q_i, u] \underbrace{\delta^*}_{M} [q_j, v]$$
 denotes a sequence of 0 or more transitions.

- **Defn. 5.2.4.** The function $\hat{\delta} (\underbrace{\delta^*}_{M}) : Q \times \Sigma^* \rightarrow Q$ of a DFA is called the **extended transition function** such that
 $$\hat{\delta}(q_i, ua) = \delta(\hat{\delta}(q_i, u), a)$$
Example: Give the state diagram of a DFA M such that M accepts all strings that start and end with a, or that start and end with b, i.e., M accepts strings that start and end with the same symbol, over the alphabet $\Sigma = \{a, b\}$.

Note: Interchanging the accepting states and non-accepting states of a state diagram for the DFA M yields the DFA M' that accepts all the strings over the same alphabet that are not accepted by M.
DFA and State Diagrams

Construct a DFA that accepts one of the following languages over the alphabet \{ 0, 1 \}

i. “The set of all strings ending in 00”.

ii. “The set of all strings when interpreted as a binary integer, is a multiple of 5, e.g., strings 101, 1010, and 1111 are in the language, whereas 10, 100, and 111 are not”.
State Diagrams

- **Theorem 5.3.3.** Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Then $M' = (Q, \Sigma, \delta, q_0, Q - F)$ is a DFA with $L(M') = \Sigma^* - L(M)$.

 Proof: Let $w \in \Sigma^*$ and $\hat{\delta}$ be the extended transition function constructed from δ. For each $w \in L(M)$, $\hat{\delta}(q_0, w) \in F$. Thus, $w \notin L(M')$. Conversely, if $w \notin L(M)$, then $\hat{\delta}(q_0, w) \in Q - F$ and thus $w \in L(M')$.

- Examples 5.3.7 and 5.3.8 (page 157)

- An **incompletely specified** DFA M is a machine defined by a partial function from $Q \times \Sigma$ to Q such that M halts as soon as it is possible to determine that an input string is (not) acceptable.

 - M can be transformed into an equivalent DFA by adding a non-accepting “error” state and transitions out of all the states in M with other input symbols to the “error” state.
5.4. Non-deterministic Finite Automata (NFA)

- Relaxes the restriction that all the outgoing arcs of a state must be labeled with *distinct symbols* as in DFAs.

- The transition to be executed at a given state can be *uncertain*, i.e., > 1 possible transitions, or no applicable transition.

- Applicable for applications that require *backtracking* technique.

- **Defn 5.4.1** A non-deterministic finite automaton is a quintuple \(M = (Q, \Sigma, \delta, q_0, F) \), where
 1. \(Q \) is a finite set of states
 2. \(\Sigma \) is a finite set of symbols, called the *alphabet*
 3. \(q_0 \in Q \) the *start state*
 4. \(F \subseteq Q \), the set of *final (accepting) states*
 5. \(\delta \) is a total function from \((Q \times \Sigma)\) to \(\mathcal{P}(Q) \), known as the *transition function*
NFA

- Every DFA is an NFA, and vice versa
 - Hence, in an NFA, it is possible to have \((p, a, q_1) \in \delta\) and \((p, a, q_2) \in \delta\), where \(q_1 \neq q_2\)

- **Example.** Consider the following state diagram of NFA \(M\):
 - \(M\) stays in the start state until it “guesses” that it is three places from the end of the computation.
Advantages of NFAs over DFAs

- Sometimes DFAs have many more states, conceptually more complicated

- Understanding the functioning of the NFAs is much easier.

 Example 5.4.2 \(M_1(\text{DFA}) \) and \(M_2(\text{NFA}) \) accept \((a \cup b)^* \, bb \, (a \cup b)^* \)

\[
\begin{align*}
M_1: & \quad \begin{array}{c}
q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \\
\end{array} \\
M_2: & \quad \begin{array}{c}
q_0 \xrightarrow{a, b} q_1 \xrightarrow{b} q_2 \\
\end{array}
\]

Example 5.4.3 An NFA accepts strings over \{ a, b \} with substring \(aa \) or \(bb \).
5.5 Lambda Transitions

- A transition of any finite automata which shifts from one state to another without reading a symbol from the input tape is known as \(\lambda \)-transition.

- \(\lambda \)-transition is labeled by \(\lambda \) on an arc in the state transition diagram.

- \(\lambda \)-transition represent another form of non-DFA computations.

- Provide a useful tool for designing finite automata to accept complex languages.

- **Defn. 5.5.1.** An NFA with \(\lambda \)-transition, denoted \(NFA-\lambda \), is a quintuple \(M = (Q, \Sigma, \delta, q_0, F) \), where

i) \(Q, \Sigma, q_0, \) and \(F \) are the same as in an NFA

ii) \(\delta: Q \times (\Sigma \cup \{ \lambda \}) \rightarrow \mathcal{P}(Q) \)

- **Example 5.5.1** (\(\cup \)) and compared with the equivalent DFA in Ex. 5.3.3

- **Example 5.5.2** (\(\circ \)) and **Example 5.5.3** (\(\ast \))
5.5 Lambda Transitions

Example 5.5.1
The language of the NFA-λ M is $L(M_1) \cup L(M_2)$.

that accept $(a \cup b)^*bb(a \cup b)^*$ and $(b \cup ab)^*(a \cup \lambda)$, respectively. Composite machines are built by appropriately combining the state diagrams of M_1 and M_2.

Example 5.5.2
An NFA-λ that accepts $L(M_1)L(M_2)$, the concatenation of the languages of M_1 and M_2, is constructed by joining the two machines with a lambda arc.

Example 5.5.3
Lambda transitions are used to construct an NFA-λ that accepts all strings of even length over $\{a, b\}$. First we build the state diagram for a machine that accepts strings of length two.

$((Q \cup \lambda)(a \cup b))^*$

Example 5.3.3
5.6. Removing Non-determinism

- Given any NFA(\(\lambda\)), there is an equivalent DFA.

- **Defn 5.6.1.** The \(\lambda\)-closure of a state \(q_i\), denoted \(\lambda\)-closure\((q_i)\), is defined recursively by

 (i) Basis: \(q_i \in \lambda\)-closure\((q_i)\)

 (ii) Recursion: let \(q_j \in \lambda\)-closure\((q_i)\) and \(q_k \in \delta(q_j, \lambda)\)
 \[\Rightarrow q_k \in \lambda\)-closure\((q_i)\) \]

 (iii) Closure: each \(q_j \in \lambda\)-closure\((q_i)\) is obtained by a number of applications of (ii)

- **Defn 5.6.2.** The input transition function \(t\) of an NFA-\(\lambda\) \(M = (Q, \Sigma, \delta, q_0, F)\) is a function from \(Q \times \Sigma \rightarrow \mathcal{P}(Q)\) such that

\[
 t(q_i, a) = \bigcup_{q_j \in \lambda\text{-closure}(q_i)} \lambda\text{-closure}(\delta(q_j, a))
\]

- \(t\) is used to construct an equivalent DFA
Removing Non-determinism

- **Example**: Consider the transition diagram in Fig. 5.3 on p. 171 to compute \(t(q_1, a) \):
 \[
 \lambda\text{-closure}(q_1) = \{ q_1, q_4 \} \\
 t(q_1, a) = \lambda\text{-closure}(\delta(q_1, a)) \cup \\
 \quad \lambda\text{-closure}(\delta(q_4, a)) \\
 = \lambda\text{-closure}(\{ q_2 \}) \cup \lambda\text{-closure}(\{ q_5 \}) \\
 = \{ q_2, q_3 \} \cup \{ q_5, q_6 \} \\
 = \{ q_2, q_3, q_5, q_6 \}
 \]

- Given \(M = (Q, \Sigma, \delta, q_0, F) \), \(t = \delta \) iff there is no \(\lambda \)-transition in \(\delta \)

- **Example 5.6.1**.

- To remove the non-determinism in an NFA(-\(\lambda \)), an equivalent DFA simulates the exploration of all possible computations in the NFA (-\(\lambda \))
 - the nodes of the DFA are sets of nodes from the NFA(-\(\lambda \))
 - node \(Y \subseteq Q \) in NFA(-\(\lambda \)) can be reached from node \(X \subseteq Q \) in NFA(-\(\lambda \)) on ‘\(a \)’ if \(\exists q \in Y \) and \(\exists \rho \in X \) such that \(\delta(\rho, a) \ni q \) in the DFA
Example 5.6.1. Transition tables are given (below) for the transition function δ. Compute the input transition function t of the NFA-λ with state diagram M. The language of M is $a^+c^*b^*$

<table>
<thead>
<tr>
<th>δ</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>${q_0, q_1, q_2}$</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>q_1</td>
<td>\emptyset</td>
<td>${q_1}$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>q_2</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>${q_2}$</td>
<td>${q_1}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>${q_0, q_1, q_2}$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>q_1</td>
<td>\emptyset</td>
<td>${q_1}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>q_2</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>${q_1, q_2}$</td>
</tr>
</tbody>
</table>

M: $M: q_0 \xrightarrow{a} q_1 \xrightarrow{b} \emptyset \xrightarrow{c} \emptyset \xrightarrow{\lambda} \emptyset$
Algorithm 5.6.3. Construction of DM, a DFA Equivalent to NFA-λ

Input: an NFA-λ \(M = (Q, \Sigma, \delta, q_0, F) \), input transition function \(t \) of \(M \)

1. Initialize \(Q' \) to \{ \(\lambda \)-closure\((q_0) \) \}
2. Repeat
 2.1. IF there is a node \(X \in Q' \) and a symbol \(a \in \Sigma \) with no arc leaving \(X \) labeled \(a \), THEN
 2.1.1. Let \(Y = \bigcup_{q_i \in X} t(q_i, a) \)
 2.1.2. IF \(Y \not\in Q' \), THEN set \(Q' = Q' \cup \{ Y \} \)
 2.1.3. Add an arc from \(X \) to \(Y \) labeled \(a \)
 ELSE \(\text{done} := \text{true} \)
 UNTIL \(\text{done} \)
3. the set of accepting states of DM is
 \[F' = \{ X \in Q' | X \text{ contains } q_i \in F \} \]
Removing Non-determinism

- **Example.** Consider the t-transition table for Example 5.6.1

 $\begin{array}{|c|c|c|c|}
 \hline
 t & a & b & c \\
 \hline
 q_0 & \{ q_0, q_1, q_2 \} & \{ \} & \{ \} \\
 q_1 & \{ \} & \{ q_1 \} & \{ \} \\
 q_2 & \{ \} & \{ q_1 \} & \{ q_1, q_2 \} \\
 \hline
 \end{array}$

- **Theorem 5.6.4.** Let $w \in \sum^*$ and $Q_w = \{ q_{w_1}, \ldots, q_{w_j} \}$ be the set of states entered upon the completion of the processing of the string w in M. Processing w in DM terminates in state Q_w. (Prove by induction on $|w|$.)
Determinism and Non-determinism

- **Corollary 5.6.5.** The finite automata M and DM (as shown in Algorithm 5.6.3) are \equiv.

- **Example 5.6.2** and **Example 5.6.3** show NFA \Rightarrow DFA

- (Transformation) Relationships between the classes of finite automata:

\[
\text{DFA} \iff \text{NFA-\(\lambda\)} \\
\subseteq \quad \subseteq \\
\text{NFA}
\]