Chapter 8

Turing Machine (TMs)
Turing Machines (TMs)

- Accepts the languages that can be generated by *unrestricted* *(phrase-structured)* grammars

- No computational machine (i.e., computational language recognition system) is *more powerful* than the class of TMs due to the language processing power, i.e., the *generative power of grammars*, its unlimited memory, and time of computations

- Proposed by Alan Turing in 1936 as a result of *studying algorithmic processes* by means of a *computational model*

- TMs are similar to FSAs since they both consist of
 1. a *control mechanism*, and
 2. an *input tape*

In addition, TMs can
 1. *move* their tape head *back and forth*, and
 2. *write* on, as well as *read* from, their tapes.
Turing Machines

- Defn. 8.1.1 A TM is a quintuple \(M = (Q, \Sigma, \Gamma, \delta, q_0) \), where
 - \(Q \) is a finite set of states
 - \(\Gamma \) is a finite set called the tape alphabet which contains \(B \), a special symbol that represents a blank
 - \(\Sigma \subseteq \Gamma - \{ B \} \), is the input alphabet
 - \(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{ L, R \} \), a transition function, which is a partial function
 - \(q_0 \in Q \), is the start state
Turing Machines

Machine Operations:

- **Write** operation - replaces a symbol on the tape with another (not necessarily distant) symbol

- **Move** operation - moves the tape head one cell to the right (left, respectively) and then *shift* to a new (or current) state

- **Halt** operation - halts when the TM encounters a \(<\text{state, input symbol}>\) pair for which no transition is defined
Turing Machines

- **Machine Operations.** TMs are designed to perform *computations* on strings from the input alphabet.

- **Example 8.1.2.** A TM produces a *copy* of input string over \{ \(a, b \) \} with input \(BuB \) and terminates with tape \(BuBuB \), where \(u \in (a \cup b)^* \).
Transitions of TMs:

- \[uq_i vB \xrightarrow{m} xq_j yB \] denotes that \(xq_j yB \) is obtained from \(uq_i vB \) by a single transition of \(M \).
- \[uq_i vB \xrightarrow{* m} xq_j yB \] denotes that \(xq_j yB \) is obtained from \(uq_i vB \) by zero or more transitions of \(M \).

TM as Language Acceptors

- TMs can be designed to accept languages besides computing functions, and accepting a string does not require the entire input string to be read.
- Defn. 8.2.1 Let \(M = (Q, \Sigma, \Gamma, \delta, q_0, F) \) be a TM. A string \(u \in \Sigma^* \) is accepted by final state if the computation of \(M \) with input \(u \) halts in a final state. A computation that terminates abnormally rejects the input regardless of the state in which the machine halts. The language of \(M \), \(L(M) \), is the set of all string accepted by \(M \). A language accepted by a TM is called a recursively enumerable language.
Example 8.2.2. A TM that accepts the language \(\{ a^i b^i c^i | i \geq 0 \} \) is
An input string S is accepted by TM M if the computation with S causes M to halt. M rejects S when M terminates abnormally or M never halts with S.

A TM of which its acceptance is defined by halting (normally) is defined by the quintuple $(Q, \Sigma, \Gamma, \delta, q_0)$.

Theorem 8.3.2 The following statements are equivalent:

i) The language L is accepted by a TM that accepts by final state

ii) The language L is accepted by a TM that accepts by halting

Example 8.3.1 A TM that accepts $(a \cup b)^* aa(a \cup b)^*$ by halting.
Transitions of TMs

- Design a TM that computes the \textit{proper-subtraction function}, i.e., \(m \div n = \max(m - n, 0) \) such that \(m \div n \) is \(m - n \), if \(m > n \), and 0, if \(m \leq n \). The TM will start with a tape consisting \(0^{m}10^{n} \) surrounded by blanks, i.e., \(B0^{m}10^{n}B \). The machine halts with its result on its tape, surrounded by blanks.
8.7 Nondeterministic TMs (NTMs)

- Provide *more than one applicable transition* for some current state/input symbol pair, i.e., > 1 non-deterministic choice

- **Formal Definition:** A NTM \(M = (Q, \Sigma, \Gamma, \delta, q_0) \) or \(M = (Q, \Sigma, \Gamma, \delta, q_0, F) \), where \(Q, \Sigma, \Gamma, \delta, q_0, \) and \(F \) are as defined in any DTMs and \(\delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{L, R\}} \)

- **Example 8.7.1** A NTM that accepts strings containing a ‘c’, which is either *preceded* or *followed* by ‘ab’
8.7 Nondeterministic TMs (NTMs)

- Acceptance in NTMs can be defined by *final state* or by *halting* alone, similar to the DTMs.
- Every NTM can be transformed into an equivalent DTM that accepts by *halting*, which is chosen because it reduces the number of computations from 3 to 2.
- The language accepted by NTMs are precisely those accepted by DTMs.
 - The converted can be done by using multiple (3-) tapes.
 - *Multiple* computations for a single input string are sequentially generated and examined.
 - A *maximum* number of transitions can be defined for any combination of <state, input symbol>.
8.7 Nondeterministic TMs (NTMs)

- **Example.** Transforming the NTM in Example 8.7.1 into its DTM

```
q_0 -> q_1 -> q_2 -> q_3 -> q_4
```

Table 8.1: Ordering of Transitions

<table>
<thead>
<tr>
<th>State</th>
<th>Symbol</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>B</td>
<td>1q_1, B, R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2q_1, B, R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3q_1, B, R</td>
</tr>
<tr>
<td>q_1</td>
<td>a</td>
<td>1q_1, a, R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2q_1, a, R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3q_1, a, R</td>
</tr>
<tr>
<td>q_1</td>
<td>b</td>
<td>1q_1, b, R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2q_1, b, R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3q_1, b, R</td>
</tr>
<tr>
<td>q_1</td>
<td>c</td>
<td>1q_1, c, R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2q_2, c, R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3q_5, c, L</td>
</tr>
</tbody>
</table>

```
<table>
<thead>
<tr>
<th>State</th>
<th>Symbol</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_2</td>
<td>a</td>
<td>1q_3, a, R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2q_3, a, R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3q_3, a, R</td>
</tr>
<tr>
<td>q_3</td>
<td>b</td>
<td>1q_4, b, R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2q_4, b, R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3q_4, b, R</td>
</tr>
<tr>
<td>q_5</td>
<td>b</td>
<td>1q_6, b, L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2q_6, b, L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3q_6, b, L</td>
</tr>
<tr>
<td>q_6</td>
<td>a</td>
<td>1q_7, a, L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2q_7, a, L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3q_7, a, L</td>
</tr>
</tbody>
</table>
```

Examples of transitions:

- $q_0 B a c a b B 1$
- $q_0 B a c a b B 1$
- $B q_1 a c a b B 1$
- $q_1 a c a b B 1$
- $B a q_1 a c a b B 1$
- $B a q_1 a c a b B 2$
- $B a c q_1 a b B 1$
- $B a c q_1 a b B 1$
- $B a c a q_1 b B 1$
- $B a c a q_3 b B 1$
- $B a c a b q_1 B$
- $B a c a b q_4 B$
Transitions of TMs

- Design a TM that takes as input a number \(N \) and adds 1 to it in *binary*. The tape initially contains a $ followed by \(N \) in *binary*. The tape head is initially scanning the $ in the initial state \(q_0 \). The TM should halt with \(N+1 \), in *binary*, on the tape, scanning the leftmost symbol of \(N+1 \) in the final state \(q_f \) with $ removed. For instance, \(q_0$10011 \) yields \(q_f10100 \), and \(q_0$11111 \) yields \(q_f100000 \).
8.6 Multitape TMs

- A K-tape TM
 - consists of k tapes and k independent tape heads
 - reads k tapes simultaneously, but has only one state
 - is configured by the current tape symbol being pointed to by each tape head and the current state, e.g.,

```
Tape 3

Tape 2

Tape 1
```

- A transition in a multitape TM may
 - change the current state,
 - (over)write a symbol on each tape, and
 - independently reposition each of the tape heads
8.6 Multitape TMs

- A transition of a k-tape TM is defined as
 \[\delta(q_i, x_1, x_2, \ldots, x_k) = [q_j; y_1, d_1; y_2, d_2; \ldots; y_k, d_k] \]
 where $q_i, q_j \in Q$, $x_n, y_n \in \Gamma$, and $d_n \in \{L, R, S\}$, $1 \leq n \leq k$.

- Initialize configuration:
 - The input string is placed on tape 1, whereas all the other tapes are assumed to be blank to begin with.
 - The tape heads scan the leftmost position of each tape.
 - Any tape head attempts to move to the left of the leftmost position terminates the computation abnormally.

- A language accepted by a TM is a recursively enumerable language.

- A language that is accepted by a TM that halts for all input strings is said to be recursive.
Example 8.6.2 The set \(\{ a^k \mid k \text{ is a perfect square} \} \) is a recursively enumerable language (and is also a recursive language).

- Tape 1 holds the input string, a string of \(a \)'s
- Tape 2 holds a string of \(X \)'s whose length is a perfect square
- Tape 3 holds a string of \(X \)'s whose length is \(\sqrt{|S|} \), where \(S \) is the string on Tape 2

- Step 1: Since the input is not a null string, initialize tapes 2 and 3 with an \(X \), and all the tape head move to Position 1

- Step 2: Move the heads of tapes 1 and 2 to the right, since they have scanned a nonblank square

Accept: if both read a blank
Reject: if tape head 1 reads a blank and tape head 2 reads an \(X \)
Example 8.6.2 (Continued).

(iii) Tape 3 - 2

\[X \quad X \]

Tape 2 – \(2^2\)

\[X \quad X \quad X \quad X \]

Tape 1 - input

\[a \quad a \quad a \quad a \quad a \]

• Step 3: Reconfiguration for comparison with the next perfect square by
 - adding an \(X\) on tape 2 to yield \(k^2+1\) \(X\)'s
 - appending two copies of the string on tape 3 to the end of the string on tape 2 to yield \((k+1)^2\) \(X\)'s
 - adding an \(X\) on tape 3 to yield \((k + 1)\) \(X\)'s on tape 3
 - moving all the tape heads to Position 1

(iv) Tape 3 - 2

\[X \quad X \]

Tape 2 – \(2^2\)

\[X \quad X \quad X \quad X \]

Tape 1 - input

\[a \quad a \quad a \quad a \quad a \]

\(q_2\)

• Step 4: Repeat Steps 2 through 3.

(v) Tape 3 - 3

\[X \quad X \quad X \]

Tape 2 – \(3^2\)

\[X \quad X \]

Tape 1 - input

\[a \quad a \quad a \quad a \quad a \]

\(q_2\)

• Another iteration of Step 2 halts and rejects the input.
Example 8.6.2 (Continued). The transition function of the TM that accepts \(\{ a^k | k \text{ is a perfect square} \} \):

\[
\begin{align*}
q_0 \quad [B/B R, B/B R, B/B R] & \quad q_1 \quad [a/a S, B/X S, B/X S] & \quad q_2 \quad [a/a R, X/X R, X/X S] \\
[\text{oward } B] & \quad [B/B S, B/B S, X/X S] \\
q_3 & \quad q_4 \quad [a/a S, B/X R, X/X S] & \quad q_5 \quad [a/a S, B/X R, X/X S] \\
[\text{oward } B] & \quad [a/a S, B/X R, X/X R] \\
q_6 & \quad q_2 \quad [a/a L, B/B L, B/X L] & \quad q_6 \quad [a/a L, X/X L, X/X L], \\
[\text{oward } B] & \quad [a/a L, X/X L, B/B S], \\
& \quad [a/a L, B/B S, B/B S], \\
& \quad [B/B S, X/X L, B/B S]
\end{align*}
\]
Example 8.6.2 (Continued). The transition function of the TM that accepts \(\{ a^k \mid k \text{ is a perfect square} \}:

[Step 1]
\[
\begin{align*}
\delta(q_0, B, B, B) &= [q_1; B, R; B, R; B, R] \quad \text{(initialize the tape)} \\
\delta(q_1, a, B, B) &= [q_2; a, S; X, S; X, S] \quad \text{(}q_1\text{ is a final state)}
\end{align*}
\]

[Step 2]
\[
\begin{align*}
\delta(q_2, a, X, X) &= [q_2; a, R; X, R; X, S] \quad \text{(compare strings on tapes 1 and 2)} \\
\delta(q_2, B, B, X) &= [q_3; B, S; B, S; X, S] \quad \text{(accept; } q_3\text{ is a final state)} \\
\delta(q_2, a, B, X) &= [q_4; a, S; X, R; X, S] \quad \text{(add an } X\text{ to tape 2 and re-compute)}
\end{align*}
\]

[Step 3]
\[
\begin{align*}
\delta(q_4, a, B, X) &= [q_5; a, S; X, R; X, S] \quad \text{(rewrite tapes 2 and 3)} \\
\delta(q_5, a, B, X) &= [q_4; a, S; X, R; X, R] \quad \text{(add two } X\text{'s to tape 2 for each } X\text{ on tape 3 – to generate } (k+1)^2) \\
\delta(q_4, a, B, B) &= [q_6; a, L; B, L; X, L] \quad \text{(add an } X\text{'s to tape 2 to yield } k+1)
\end{align*}
\]

[Step 4]
\[
\begin{align*}
\delta(q_6, a, X, X) &= [q_6; a, L; X, L; X, L] \quad \text{(reposision tape heads)} \\
\delta(q_6, a, X, B) &= [q_6; a, L; X, L; B, S] \quad \text{(tape 3 at 1st cell, but not tapes 1 & 2)} \\
\delta(q_6, a, B, B) &= [q_6; a, L; B, S; B, S] \quad \text{(tape 2 & 3 at 1st cell, but not tape 1)} \\
\delta(q_6, B, X, B) &= [q_6; B, S; X, L; B, S] \quad \text{(tape 1 & 3 at 1st cell, but not tape 2)} \\
\delta(q_6, B, B, B) &= [q_2; B, R; B, R; B, R] \quad \text{(repeat comparison cycle)}
\end{align*}
\]
8.6 Multitape TMs

- A multitape TM can be represented by a state transition diagram.
- **Example 8.6.3** A 2-tape TM that accepts \{ uu \mid u \in \{ a, b \}^* \}.

Computation:
1) Make a *copy* of the input \(S \) (on tape 1) to tape 2; tape heads: right of \(S \).
2) Move both tape heads one step to the left.
3) Move the head of tape 1 *two* squares for each square move of tape 2.
4) *Reject* the input \(S \) if the TM halts in \(q_3 \). (i.e. \(|S|\) is *odd*.)
5) *Compare* the 1st half with the 2nd half of \(S \) in \(q_4 \)
6) *Accept* \(S \) in \(q_5 \)

\[
\begin{array}{c}
q_0 \\
\text{[B/B R, B/B R]} \quad \Rightarrow \quad q_1 \\
\text{[x/x R, B/x R]} \quad \Rightarrow \quad q_2 \\
\text{[B/B L, B/B L]} \quad \Rightarrow \quad q_3 \\
\text{[x/x L, y/y L]} \quad \Rightarrow \quad q_4 \\
\text{[x/x L, y/y S]} \quad \Rightarrow \quad q_5 \\
\text{[y/y R, B/B R]} \quad \Rightarrow \quad q_5 \\
\end{array}
\]
Theorem 8.6.1 A language L is accepted by a multitape TM iff it is accepted by a standard TM.

Proof. By simulating a multitape TM using a single tape with multitacksTM.