Chapter 8

Relational Database Design
Relational Database Design: Goals

- Reduce *data redundancy* (undesirable *replication* of data values)

- Minimize *anomaly* problems (data model is structured in an improper manner)

- Maintain (correct) information

- Enforce *semantic* and *integrity* constraints, e.g., using dependency and domain constraints
Relational Database Design: Problems

- **Data replication**: extra storage, update anomalies
- **Anomaly**: costly and data inconsistency
- **Loss of information**: lossy decomposition
- **Un-enforced dependency constraints**: dependencies are lost
Integrity Constraints: Functional Dependency (FD)

- FD constraints derived from the *intra-relationships* among attributes in a relation that models the real-world enterprise
- Used to specify integrity/semantic constraints of legal relations
- **Definition:** Let $X \subseteq R$ and $Y \subseteq R$.
 - $X \rightarrow Y$, i.e., *X functionally determines Y* iff $\forall t_1, t_2 \in r(R)$, $t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y]$
 - A set of attributes X *functionally determines* a set of attributes Y if the value of X **uniquely determines** the value of Y
 - If $X \rightarrow R$, then X is a *superkey* of R, i.e., $\forall t_1, t_2 \in r(R)$, $t_1[X] = t_2[X] \Rightarrow t_1[R] = t_2[R]$, which holds for all instances of R
 - Total # of possible FDs in R: $2^{|R|} \times 2^{|R|}$ including $\emptyset \rightarrow R$, $R \rightarrow \emptyset$
 - **Trivial** FDs: FDs satisfied by all relations, e.g., $R \rightarrow A$ since $t_1[R] = t_2[R] \Rightarrow t_1[A] = t_2[A]$
 (general from) $X \rightarrow Y$ is **trivial** if $Y \subseteq X$
 - A *schema constraint* instead of an instance constraint
Integrity Constraints

- Inference Rules for FDs
- Determines FDs that are logically implied by a set of FDs, e.g.,

 if \(A \rightarrow B \) and \(B \rightarrow C \), then \(A \rightarrow C \), since by definition
 - if \(t_1[A] = t_2[A] \), then \(t_1[B] = t_2[B] \), and
 - if \(t_1[B] = t_2[B] \), then \(t_1[C] = t_2[C] \) implies
 - if \(t_1[A] = t_2[A] \), then \(t_1[C] = t_2[C] \)

- Closure of a set of FDs, \(F \), is the set \(F^+ \) of all FDs that can be inferred from (or implied by) \(F \)

- Given a set of FDs, \(F \), inferred FDs hold whenever the FDs in \(F \) hold, e.g., \(X \rightarrow AB \Rightarrow X \rightarrow A \) and \(X \rightarrow B \)

- Determine all the FDs of \(F^+ \): use Armstrong’s axioms
Integrity Constraints

Armstrong’s Axioms (AA). Let α, β, γ, δ be sets of attributes

- A1. Reflexivity: If $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$
- A2. Augmentation: If $\alpha \rightarrow \beta$, then $\delta\alpha \rightarrow \delta\beta$
- A3. Transitivity: If $\alpha \rightarrow \beta$ and $\beta \rightarrow \delta$, then $\alpha \rightarrow \delta$

AA is sound: If $\alpha \rightarrow \beta$ is inferred from a set of FDs F using AA, then $\alpha \rightarrow \beta$ holds in any relation in which FDs in F hold

AA is complete: it generates all the FDs in F^+

Additional inference rules follow from AA:

- A4. Union: If $\alpha \rightarrow \beta$ and $\alpha \rightarrow \delta$, then $\alpha \rightarrow \beta\delta$
- A5. Decomposition: If $\alpha \rightarrow \beta\delta$, then $\alpha \rightarrow \beta$ and $\alpha \rightarrow \delta$
- A6. Pseudotransitivity: If $\alpha \rightarrow \beta$ and $\gamma\beta \rightarrow \delta$, then $\gamma\alpha \rightarrow \delta$
Integrity Constraints

- Closure of attribute sets
 - Closure of a set of attributes α with respect to F is the set α^+ of all attributes that are functionally determined by α
 - α^+ can be calculated by applying AA repeatedly using the FDs in F
 - **Algorithm**: Compute the closure of a set of attrs.
 - **Input**: A set of attributes, α, and a set of FDs, F.
 - **Output**: The closure of α, α^+ (i.e., ω).
 - **BEGIN**
 $\omega := \alpha$;
 REPEAT
 for each FD $\beta \rightarrow \gamma \in F$ do
 if $\beta \subseteq \omega$ then $\omega := \omega \cup \gamma$;
 UNTIL there are no changes to ω;
 END;
Key Finding

Algorithm: Determine all (candidate) keys for a relation schema.

Input: A set of FDs, F, and a relation schema, R.

Output: The set of keys for R.

BEGIN

Remark 1. If an attribute A appears only on the left hand side (L.H.S.) of the FDs in F, then attribute A has to be in all keys because it cannot be inferred.

Remark 2. If an attribute A appears only on the right hand side (R.H.S.) of the FDs in F, then it is highly unlikely (unless in a very special circumstance) that A is an attribute in a key.

Step 1. Determine those attributes that appear only on the L.H.S. of the FDs in F. This set of attributes, called X, must be in all keys.

Step 2. Determine whether X in Step 1 is a key. If so, X is the only key. If not, start adding attributes (one at a time) that appear on both L.H.S. and R.H.S. of the FDs in F to X.

Step 3. If Step 2 fails to find a key, then add attributes (one at a time) which appear only on the R.H.S. of the FDs in F to X.

END
Relational Database Design

Normalization

- A DB schema design tool
- A process of replacing associations among attributes in a relation schema
- An approximation of the relation schemas that should be created
- Objectives: accomplish the goals of relational DB design
- 2 approaches: decomposition and synthesis
Relational Database Design

- Decomposition
 - A process to *split* or *decompose* a relation until the resultant relations no longer exhibit the undesirable problems, e.g., data redundancy, data inconsistency, anomaly, etc.
 - Decomposing a relation schema R means breaking R into a pair of schemas, possibly intersecting
 - this process is repeated until all the decomposed relation schemas are in the desired (normal) form.
Relational Database Design Normal Forms (NFs)

- Restrictions on the DB schema that preclude certain undesirable properties (*data redundancy, update anomaly, loss of information*, etc.) from the DB.

- A relation schema R is in *PJNF* if

 R is in *4NF* if

 R is in *BCNF* if

 R is in *3NF* if

 R is in *2NF* if

 R is in *1NF*
Relational Database Design Normal Forms (NFs)

- **Definition.** A data value v is **atomic** if v is *not* (i) a set of values or (ii) composite value; otherwise, v is **non-atomic**.

- **First Normal Form (1NF).** A relation schema R is in **1NF** if for every attribute A in R, the values in the domain of A, i.e., $\text{dom}(A)$, are **atomic**.

- **Boyce-Codd Normal Form (BCNF).** A relation schema R is in **BCNF** if for every non-trivial FD $X \rightarrow Y$ applied to R, X is a superkey for R.

- **Definition.** Let A be an attribute in a relation schema R, and let F be a set of FDs over R. A is a **prime** attribute in R if A is contained in some candidate key of R; otherwise, A is a **non-prime** attribute in R.
Relational Database Design Normal Forms (NFs)

- **Third Normal Form (3NF).** A relation schema R is in 3NF if
 1. R is in 1NF, and
 2. For every non-trivial FD $X \rightarrow Y$ applied to R, either
 - X is a superkey for R, or
 - every attribute in Y is an attribute of some candidate key for R, i.e., prime.

- **Lossy decomposition:** a decomposition is *lossy* if the natural join of all the decomposed relations contain *additional* tuples and the original relation is lost.

- **Lossless decomposition:** a decomposition is *lossless* if the natural join of all the decomposed relations always yields the original relation without any extra tuples, i.e.,

 a decomposition $\{R_1, R_2, \ldots, R_n\}$ of R is lossless if $\forall r(R)$,

 $$r(R) = \pi_{R_1}(r) \bowtie \pi_{R_2}(r) \bowtie \ldots \bowtie \pi_{R_n}(r)$$
Relational Database Design

- **2-Relational lossless-join decomposition:**

 Let R_1 and R_2 be decomposed schemas of R. Let F be a set of FDs on R. The decomposition is *lossless* if

 $$R_1 \cap R_2 \rightarrow R_1 \in F^+ \text{ or } R_1 \cap R_2 \rightarrow R_2 \in F^+$$

- **Dependency preserving:** a decomposition is *dependency preserving* if no dependency is lost in the process.

Let F be the set of FDs on R.

Let R_1, \ldots, R_n be a decomposition of R.

Let F_i, $1 \leq i \leq n$, be the set of FDs in F^+ which applies to R_i.

Let $F' = \bigcup_{i=1}^{n} F_i$.

If $F'^+ = F^+$, then the decomposition is *dependency preserving*.